diophantus

Log in | Create account
Hello, this is beta version of diophantus. If you want to report about a mistake, please, write to hello@diophantus.org
All articles by
Aharonian F. | Aharonian F. A. | Aharonian Felix | Aharonian Felix A. | Aharonian F | Aharonian | Aharonian F A | Aharonian Henri AartsFelix | Aharonian Paolo S. Coppi Felix A.

F | F A. | F Paulo C. Marques | F Abdullahi B. | F Ambrosino | F Castander. | F J. | F Muhammad Arsath K | F Obada A-S | F Sagar Zephania C

Search results


An extreme particle accelerator in the Galactic plane: HESS J1826$-$130

Collaboration H. E. S. S., Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arcaro C., Armand C., Armstrong T., Ashkar H.
25 Oct 2020 astro-ph.HE arxiv.org/abs/2010.13101

The unidentified very-high-energy (VHE; E $>$ 0.1 TeV) $\gamma$-ray source, HESS J1826$-$130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady $\gamma$-ray flux from HESS J1826$-$130, which appears extended with a half-width of 0.21$^{\circ}$ $\pm$ 0.02$^{\circ}{\text{stat}}$ $\pm$ 0.05$^{\circ}{\text{sys}}$. The source spectrum is best fit with either a power-law function with a spectral index $\Gamma$ = 1.78 $\pm$ 0.10${\text{stat}}$ $\pm$ 0.20${\text{sys}}$ and an exponential cut-off at 15.2$^{+5.5}{-3.2}$ TeV, or a broken power-law with $\Gamma{1}$ = 1.96 $\pm$ 0.06${\text{stat}}$ $\pm$ 0.20${\text{sys}}$, $\Gamma_{2}$ = 3.59 $\pm$ 0.69${\text{stat}}$ $\pm$ 0.20${\text{sys}}$ for energies below and above $E_{\rm{br}}$ = 11.2 $\pm$ 2.7 TeV, respectively. The VHE flux from HESS J1826$-$130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula (PWN), HESS J1825$-$137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826$-$130 VHE emission related to PSR J1826$-$1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826$-$130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to $\gtrsim$200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants (SNRs), molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.

The observation of the Crab Nebula with LHAASO-KM2A for the performance study

Aharonian F., An Q., Axikegu , Bai L. X., Bai Y. X., Bao Y. W., Bastieri D., Bi X. J., Bi Y. J., Cai H.
13 Oct 2020 astro-ph.HE astro-ph.GA astro-ph.IM arxiv.org/abs/2010.06205

As a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to cover a large fraction of the northern sky to hunt for gamma-ray sources at energies above 10 TeV. Even though the detector construction is still underway, a half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the pipeline of KM2A data analysis and the first observation on the Crab Nebula, a standard candle in very high energy gamma-ray astronomy. We detect gamma-ray signals from the Crab Nebula in both energy ranges of 10$-$100 TeV and $>$100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance including angular resolution, pointing accuracy and cosmic ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE =(1.13$\pm$0.05${stat}$$\pm$0.08${sys}$)$\times$10$^{-14}$$\cdot$(E/20TeV)$^{-3.09\pm0.06_{stat}\pm0.02_{sys}}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$. It is consistent with previous measurements by other experiments. This opens a new window of gamma-ray astronomy above 0.1 PeV through which ultrahigh-energy gamma-ray new phenomena, such as cosmic PeVatrons, might be discovered.

Search for dark matter signals towards a selection of recently-detected DES dwarf galaxy satellites of the Milky Way with H.E.S.S

Collaboration H. E. S. S., : , Abdallah H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C.
03 Aug 2020 astro-ph.HE arxiv.org/abs/2008.00688

Dwarf spheroidal galaxy satellites of the Milky Way are prime targets for indirect detection of dark matter with gamma rays due to their proximity, high dark matter content and absence of non-thermal emission processes. Recently, the Dark Energy Survey (DES) revealed the existence of new ultra-faint dwarf spheroidal galaxies in the southern-hemisphere sky, therefore ideally located for ground-based observations with the imaging atmospheric Cherenkov telescope array H.E.S.S. We present a search for very-high-energy ($E\gtrsim100$ GeV) gamma-ray emission using H.E.S.S. observations carried out recently towards Reticulum II, Tucana II, Tucana III, Tucana IV and Grus II satellites. No significant very-high-energy gamma-ray excess is found from the observations on any individual object nor in the combined analysis of all the datasets. Using the most recent modeling of the dark matter distribution in the dwarf galaxy halo, we compute for the first time on DES satellites individual and combined constraints from Cherenkov telescope observations on the annihilation cross section of dark matter particles in the form of Weakly Interacting Massive Particles. The combined 95% C.L. observed upper limits reach $\langle \sigma v \rangle \simeq 1 \times 10^{-23}$ cm$^3$s$^{-1}$ in the $W^+W^-$ channel and $4 \times 10^{-26}$ cm$^3$s$^{-1}$ in the $\gamma\gamma$ channels for a dark matter mass of 1.5 TeV. The H.E.S.S. constraints well complement the results from Fermi-LAT, HAWC, MAGIC and VERITAS and are currently the most stringent in the $\gamma\gamma$ channels in the multi-GeV/multi-TeV mass range.

Resolving acceleration to very high energies along the Jet of Centaurus A

Collaboration The H. E. S. S., : , Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C.
09 Jul 2020 astro-ph.HE astro-ph.GA arxiv.org/abs/2007.04823

The nearby radio galaxy Centaurus A belongs to a class of Active Galaxies that are very luminous at radio wavelengths. The majority of these galaxies show collimated relativistic outflows known as jets, that extend over hundreds of thousands of parsecs for the most powerful sources. Accretion of matter onto the central super-massive black hole is believed to fuel these jets and power their emission, with the radio emission being related to the synchrotron radiation of relativistic electrons in magnetic fields. The origin of the extended X-ray emission seen in the kiloparsec-scale jets from these sources is still a matter of debate, although Cen A's X-ray emission has been suggested to originate in electron synchrotron processes. The other possible explanation is Inverse Compton (IC) scattering with CMB soft photons. Synchrotron radiation needs ultra-relativistic electrons ($\sim50$ TeV), and given their short cooling times, requires some continuous re-acceleration mechanism to be active. IC scattering, on the other hand, does not require very energetic electrons, but requires jets that stay highly relativistic on large scales ($\geq$1 Mpc) and that remain well-aligned with the line of sight. Some recent evidence disfavours inverse Compton-CMB models, although other evidence seems to be compatible with them. In principle, the detection of extended gamma-ray emission, directly probing the presence of ultra-relativistic electrons, could distinguish between these options, but instruments have hitherto been unable to resolve the relevant structures. At GeV energies there is also an unusual spectral hardening in Cen A, whose explanation is unclear. Here we report observations of Cen A at TeV energies that resolve its large-scale jet. We interpret the data as evidence for the acceleration of ultra-relativistic electrons in the jet, and favour the synchrotron explanation for the X-rays.

Probing the magnetic field in the GW170817 outflow using H.E.S.S. observations

Collaboration H. E. S. S., : , Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C.
21 Apr 2020 astro-ph.HE arxiv.org/abs/2004.10105

The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short $\gamma$-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of non-thermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the non-thermal electrons versus the magnetic field of the emission region. Combining the VLA (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817 / GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios.

Very high energy $\gamma$-ray emission from two blazars of unknown redshift and upper limits on their distance

Collaboration H. E. S. S., Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C., Armstrong T.
07 Apr 2020 astro-ph.HE arxiv.org/abs/2004.03306

We report on the detection of very-high-energy (VHE; $E > 100$ GeV) $\gamma$-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multi-wavelength observations with Fermi/LAT, XRT and UVOT on board the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE $\gamma$-ray regime, we deduce a 95% confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98, and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results the redshift of KUV 00311-1938 is constrained to $0.51 \leq z < 0.98$ and for PKS 1440-389 to $0.14 \lessapprox z < 0.53$.

Detection of very-high-energy {\gamma}-ray emission from the colliding wind binary {\eta} Car with H.E.S.S

Collaboration H. E. S. S., Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C., Armstrong T.
06 Feb 2020 astro-ph.HE arxiv.org/abs/2002.02336

Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) {\gamma}-ray emitters. {\eta} Car is the most prominent member of this object class and is confirmed to emit phase-locked HE {\gamma} rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) {\gamma}-ray emission from {\eta} Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.). Methods. The region around {\eta} Car was observed with H.E.S.S. between orbital phase p = 0.78 - 1.10, with a closer sampling at p {\approx} 0.95 and p {\approx} 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the {\eta} Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions. Results. H.E.S.S. detected VHE {\gamma}-ray emission from the direction of {\eta} Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE {\gamma} rays agree within statistical and systematic errors before and after periastron. The {\gamma}-ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.

H.E.S.S. and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages

Collaboration H. E. S. S., Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C., Ashkar H.
12 Dec 2019 astro-ph.HE arxiv.org/abs/1912.05868

PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Spectra and light curves were derived from observations conducted with the H.E.S.S.-II array in 2014 and 2017. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron $t_p$ and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc ($\sim t_p \pm 16$ d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares ($\sim t_p + 30$ d) and at phases before the first disc crossing ($\sim t_p - 35$ d). PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by H.E.S.S. observations. In contrast, the photon index of the measured power-law spectra remains unchanged within uncertainties for about 200 d around periastron. Lower limits on exponential cut-off energies up to $\sim 40$ TeV are placed. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.

H.E.S.S. detection of very-high-energy gamma-ray emission from the quasar PKS 0736+017

Collaboration H. E. S. S., : , Abdalla H., Adam R., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Armand C.
12 Nov 2019 astro-ph.HE arxiv.org/abs/1911.04761

Flat-spectrum radio-quasars (FSRQs) are rarely detected at very-high-energies (VHE; E>100 GeV) due to their low-frequency-peaked SEDs. At present, only 6 FSRQs are known to emit VHE photons, representing only 7% of the VHE extragalactic catalog. Following the detection of MeV-GeV gamma-ray flaring activity from the FSRQ PKS 0736+017 (z=0.189) with Fermi, the H.E.S.S. array of Cherenkov telescopes triggered ToO observations on February 18, 2015, with the goal of studying the gamma-ray emission in the VHE band. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft-X-rays and optical/UV, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, the ATOM, the KAIT and the ASAS-SN telescope. VHE emission from PKS 0736+017 was detected with H.E.S.S. during the night of February 19, 2015, only. Fermi data indicate the presence of a gamma-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling time-scale of around six hours. The gamma-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The gamma-ray observations with H.E.S.S. and Fermi are used to put constraints on the location of the gamma-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line-region with a bulk Lorentz factor $\simeq 20$, or at the level of the radius of the dusty torus with Gamma > 60. PKS 0736+017 is the seventh FSRQ known to emit VHE photons and, at z=0.189, is the nearest so far. The location of the gamma-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.

Resolving the Crab pulsar wind nebula at teraelectronvolt energies

Collaboration H. E. S. S., Abdalla H., Aharonian F., Benkhali F. Ait, , Arakawa M., Arcaro C., Arm C., Backes M., Barnard M.
20 Sep 2019 astro-ph.HE arxiv.org/abs/1909.09494

The Crab nebula is one of the most studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very high-energy gamma rays. It is known from radio to gamma-ray observations that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula (PWN), a region of up to 10~light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very high-energy gamma rays by Compton up-scattering of ambient low-energy photons. While the synchrotron morphology of the nebula is well established, it was up to now not known in which region the very high-energy gamma rays are emitted. Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), significantly larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest energy gamma rays. These gamma rays are a new probe of a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our new measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.